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Abstract. We show that the Becchi–Rouet–Stora–Tyutin (BRST)/anti-BRST invariant (3 + 1)-
dimensional two-form gauge theory has further nilpotent symmetries (dual BRST/anti-dual BRST)
that leave the gauge fixing term invariant. The generator for the dual BRST symmetry is analogous
to the co-exterior derivative of differential geometry. There exists a bosonic symmetry which keeps
the ghost terms invariant and it turns out to be the analogue of the Laplacian operator. The Hodge
duality operation is shown to correspond to a discrete symmetry in the theory. The generators of all
these continuous symmetries are shown to obey the algebra of the de Rham cohomology operators of
differential geometry. We derive the extended BRST algebra constituted by six conserved charges
and discuss the Hodge decomposition theorem in the quantum Hilbert space of states.

1. Introduction

For the covariant canonical quantization of gauge theories, one of the most elegant methods is
the Becchi–Rouet–Stora–Tyutin (BRST) formalism [1, 2] where (quantum) gauge invariance
and unitarity are respected together at any arbitrary order of perturbation theory. The first-class
constraints of the original gauge theories are found to be encoded in the subsidiary condition
(QB |phys〉 = 0) when one requires that the physical subspace (of the total Hilbert space of
states) contains only those states that are annihilated by the nilpotent (Q2

B = 0) and conserved
(Q̇B = 0) BRST charge QB . In fact, the condition QB |phys〉 = 0 implies that the operator
form of the first-class constraints annihilate the physical states. This requirement is essential
for the consistent quantization of any theory endowed with the first-class constraints (Dirac’s
prescription) [3, 4]. The nilpotency of the BRST charge (Q2

B = 0) and physicality criteria
(QB |phys〉 = 0) are the two key requirements for the discussion of cohomological aspects
of the BRST formalism [5–8] and its connection with the de Rham cohomology operator d
(exterior derivative; d2 = 0) of differential geometry defined on a compact manifold. For
instance, two physical states are said to belong to the same cohomology class w.r.t.QB if they
differ by a BRST exact state as two closed forms belong to the same cohomology class w.r.t.
operator d if they differ by an exact form. There are two other de Rham cohomology operators
that are essential for the definition of the Hodge decomposition theorem which states that, on a
compact manifold, any arbitrary n form fn(n = 0, 1, 2, 3, . . .) can be written as a unique sum
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of a harmonic form hn(�hn = 0, dhn = 0, δhn = 0), an exact form (den−1) and a co-exact
form (δcn+1):

fn = hn + den−1 + δcn+1 (1.1)

where δ = ± ∗ d∗, (δ2 = 0) is the dual exterior derivative, � = (d + δ)2 = dδ + δ d is the
Laplacian operator and ∗ is the so-called Hodge duality operation [9–12].

It is a well known fact that the cohomological operator d of differential geometry
finds its analogue in the local, conserved and nilpotent BRST charge QB [7, 8]. It is,
therefore, interesting to enquire if analogous local conserved charges (and corresponding
local symmetry transformations for a given Lagrangian density) exist for the analogues of
the other cohomological operators, namely δ and �. Some interesting attempts [13–16] have
been made to express δ and � in the language of symmetry properties of a given Lagrangian
density for the one-form interacting gauge theory in any arbitrary spacetime dimension. The
symmetry transformations, however, turn out to be non-local and non-covariant. In the
covariant formulation [17], the nilpotency of transformations are dependent on the specific
choice of parameters of the theory. Recently, it has been shown that the two-dimensional
(2D) free Abelian, as well as non-Abelian gauge theories (without any interaction with matter
fields), provide a topological† field theoretical model for the Hodge theory, where symmetry
transformations corresponding to the de Rham cohomology operators (d, δ,�) are nilpotent
(for d and δ), local, covariant and continuous [18–20]. The analogue of these local symmetries
have also been shown to exist for the 2D topological fields (i.e. 2D Abelian gauge fields)
coupled to matter (Dirac) fields in two dimensions of spacetime [21].

In this paper, we show the existence of symmetries corresponding to the de Rham
cohomology operators for a field theoretical model in the physical four (3 + 1)-dimensional
spacetime‡. The search for such symmetries in the Abelian and non-Abelian one-form gauge
theories, even though quite illuminating, has not been fully successful and satisfactory, as stated
earlier. Thus, the central theme of this paper is to show that the free Abelian antisymmetric
(two-form) gauge theory in 4D provides a prototype example for the Hodge theory, where
the de Rham cohomology operators correspond to the local and conserved charges. These
charges turn out to be the generators of specific local, covariant and continuous symmetry
transformations for the BRST-invariant Lagrangian density of this theory.

The two-form massless gauge theory is interesting by itself as it is a dual description for
the massless scalar theory. It also has an interesting constraint structure: stage-one reducibility
and corresponding ghost for the ghost feature. In addition, the two-form potential also appears
naturally in supergravity and superstring theories, including the recent developments in non-
commutative geometry [22]. Its different forms have appeared in other contexts in theoretical
physics, e.g., QCD, cosmic strings and vortices, black holes, etc [23–26]. In fact, this theory,
coupled to a one-form Abelian gauge field via a ‘topological’B∧F term, has rich mathematical
structure and has been studied from various points view, namely duality consideration [27,28],
Dirac bracket analyses [29–31], BFT Hamiltonian formulation [32], BRST quantization [33],
etc.

We shall consider the BRST-invariant version (see, e.g., section 2 (below)) of the free 4D
Kalb–Ramond Lagrangian density [23, 34, 35]:

L = 1
12H

µνλHµνλ (1.2)

† A theory with a flat spacetime metric and without any propagating degrees of freedom.
‡ We follow the notation in which the flat Minkowski metric is ηµν = diag (+,−,−,−) and the Levi-Civita totally

antisymmetric tensor is ε0123 = +1 = −ε0123, ε0ijk = εijk = −εijk, εµνλξ εµνλξ = −4!, εµνλξ εµνλρ = −3!δξρ , etc.
Here Greek indices: µ, ν, λ, . . . = 0, 1, 2, 3 and Latin indices: i, j, k, . . . = 1, 2, 3.
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whereHµνλ = ∂µBνλ+∂νBλµ+∂λBµν is the totally antisymmetric curvature tensor constructed
from the antisymmetric gauge fieldBµν† and show that: (i) in addition to the usual BRST charge
(QB), there exists a local, conserved and nilpotent dual(co)-BRST charge (QD) under which
the gauge-fixing term of this theory remains invariant. This fact should be contrasted with
the usual BRST transformations, under which it is the kinetic energy term (more precisely,
the curvature tensorHµνλ itself) that remains invariant. (ii) The anticommutator of BRST and
dual BRST transformations leads to a symmetry transformation that is generated by a local
and conserved bosonic charge (W ). This is analogous to the Laplacian operator in differential
geometry where it is given by the anticommutator of d and δ. (iii) The conserved charges
(e.g., QB,QD,W ) can be exploited together for the discussion of the Hodge decomposition
theorem in the quantum Hilbert space of states and for the analysis of the constraint structure
on the physical (harmonic) states of the theory. (iv) A discrete transformation symmetry of
the Lagrangian density relates QB and QD like a dual symmetry: QB → QD,QD → −QB

and W → −W . This relationship maintains the anticommutator between QB and QD and
the underlying discrete symmetry turns out to be a realization of the Hodge ∗ operation of
differential geometry for this gauge theory. To the best of our knowledge, this is the first
example of a field theoretical model for the Hodge theory in four (3+1)-dimensional spacetime,
where the conserved charges corresponding to the de Rham cohomology operators generate the
local, continuous and covariant transformations for the fields. The existence of new symmetries
(corresponding to δ and�) and their generalizations might turn out to be useful in the proof of
renormalizability of an interacting theory where the gauge fields are coupled to matter fields.
Thus, this paper is the first step towards our main goal of having a complete understanding of
the interacting theory.

The outline of our paper is as follows. In section 2, we recapitulate the essentials of
the BRST formalism for the two-form gauge theory and set up the notations for our further
discussion. This is followed by the discussion and derivation of the dual BRST symmetry
in section 3. We derive the symmetry generated by the Casimir operator in section 4 and
obtain the corresponding conserved charge. Section 5 is devoted to the derivation of the
extended BRST algebra and a brief discussion is provided for its possible connection to the de
Rham cohomology operators of the differential geometry. In section 6, we discuss the Hodge
decomposition theorem in the quantum Hilbert space of states and analyse the structure of
constraints on the physical states of the theory. Finally, in section 7, we make some concluding
remarks and point out some directions that can be pursued in the future.

2. Preliminary: BRST symmetry

We begin with the BRST-invariant Lagrangian density [7]:

LB = 1
12H

µνλHµνλ − 1
2B

µBµ + Bν(∂µB
µν − ∂νφ1)− ∂µβ̄∂

µβ

+(∂µC̄ν − ∂νC̄µ)∂
µCν + ρ(∂µC

µ + λ) + (∂µC̄
µ + ρ)λ (2.1)

† The gauge field Bµν is defined through the two-form: B = 1
2Bµνdx

µ ∧ dxν and the curvature tensor Hµνλ is
defined through the three-form as: H = dB. It can be readily seen that the gauge-fixing term ∂µB

µν can be defined
through the one-form by the application of δ as: ∂µBµνdxν = δB where δ = − ∗ d∗ is the dual exterior derivative of
d . It is clear that the gauge-fixing term is the ‘Hodge dual’ of the curvature term.
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whereBµ, φ1, λ and ρ are the auxiliary fields† introduced to have the off-shell nilpotent BRST
invariance. The following BRST transformations:

δBBµν = η(∂µCν − ∂νCµ) δBCµ = η∂µβ δBC̄µ = ηBµ

δBφ1 = −ηλ δBβ̄ = ηρ δB(Bµ, ρ, λ, β) = 0
(2.2)

leave the Lagrangian density invariant up to a total derivative term.
The continuous symmetry transformations (2.2) lead to the following nilpotent (Q2

B = 0)
and conserved (Q̇B = 0) BRST charge due to the Noether theorem:

QB =
∫

d3x[H 0ij ∂iCj + B0λ− ρβ̇ + (∂0Ci − ∂iC0)Bi − (∂0C̄i − ∂iC̄0)∂iβ]. (2.3)

This charge turns out to be the generator for the transformations (2.2) if we exploit the following
general relationship:

δB" = −iη[",QB]± (2.4)

where [, ]± stands for the (anti)commutator for the generic field, " being (fermionic) bosonic
in nature. For the verification of (2.4), one has to use the canonical (anti)commutators for the
Lagrangian density (2.1) as given below (with h̄ = c = 1):

[B0i (x, t), B
j (y, t)] = iδji δ(x − y) [β(x, t), ˙̄β(y, t)] = −iδ(x − y)

[Bij (x, t),H
0kl(y, t)] = i(δki δ

l
j − δliδ

k
j )δ(x − y)

[φ1(x, t), B0(y, t)] = −iδ(x − y) [β̄(x, t), β̇(y, t)] = −iδ(x − y)

{C0(x, t), ρ(y, t)} = −iδ(x − y) {C̄0(x, t), λ(y, t)} = iδ(x − y)

{Ci(x, t),&j

C(y, t)} = iδji δ(x − y) {C̄i(x, t),&j

C̄
(y, t)} = iδji δ(x − y)

(2.5)

where δ(x − y) is the Dirac delta function in 3D of space (i.e. δ(3)(x − y)) and the expression
for the canonical momenta is

&
(i)

(C) = −(∂0C̄i − ∂iC̄0) &
(i)

(C̄)
= (∂0Ci − ∂iC0). (2.6)

All the rest of the (anti)commutators are zero.
It can be readily seen that the ghost part of the Lagrangian density has the following

discrete symmetry invariance:

β → ∓iβ̄ Cµ → ±iC̄µ ρ → ±iλ
β̄ → ±iβ C̄µ → ±iCµ λ → ±iρ.

(2.7)

As a result of this symmetry, one can define an anti-BRST chargeQAB from (2.3) and one can
obtain anti-BRST symmetry from (2.2) by exploiting (2.7). Furthermore, the total Lagrangian
density (2.1) remains invariant under the following transformations:

Bµν → Bµν φ1 → φ1 Bµ → Bµ

β → e2(β Cµ → e(Cµ λ → e(λ (2.8)

β̄ → e−2(β̄ C̄µ → e−(C̄µ ρ → e−(ρ

where( is a global (spacetime-independent) scale transformation parameter. This continuous
symmetry leads to the derivation of a conserved ghost charge (Qg) as

Qg =
∫

d3x[Ci&
(i)

(C) + C0&
(0)
(C) + 2β&β − 2β̄&β̄ − C̄0&

(0)
(C̄)

− C̄i&
(i)

(C̄)
] (2.9)

† By integrating out the auxiliary fields, we will obtain the Lagrangian density which respects the on-shell nilpotent
BRST symmetry.



Hodge decomposition theorem for Abelian two-form gauge theory 7153

where &s are the canonical momenta w.r.t. ghost fields†. It can be readily seen, by exploiting
the canonical (anti)commutators of (2.5), that

Q2
B = 1

2 {QB,QB} = 0 Q2
AB = 1

2 {QAB,QAB} = 0

{QB,QAB} = 0 i[Qg,QB] = +QB i[Qg,QAB] = −QAB.
(2.10)

Thus, we note that QB and QAB are the nilpotent operators of order 2 (i.e. Q2
B = Q2

AB = 0)
and the ghost number for them is +1 and −1, respectively. This ghost number will also have
relevance to some aspects of differential geometry (see, e.g., section 5). Though the conserved
and nilpotent charge QB is the analogue of the exterior derivative d [7, 8], the conserved and
nilpotent chargeQAB is not the analogue of the co-exterior derivative δ. This is due to the fact
that the anticommutator between d and δ is not equal to zero (i.e. {d, δ} = 0) whereasQB and
QAB anticommute ({QB,QAB} = 0) with each other. Furhermore, there is no analogue of the
Laplacian operator � in (2.10). This fact can be succinctly expressed as

Q2
B = 0 d2 = 0 Q2

AB = 0 δ2 = 0

{QB,QAB} = 0 {d, δ} = � = 0.
(2.11)

Recently, it has been pointed out that the cohomologically higher-order BRST and anti-BRST
operators do not anticommute, and their anticommutator leads to the definition of a higher-order
Laplacian operator for the compact non-Abelian Lie algebras [36]. This argument does not
apply here in our discussion of the Abelian two-form gauge theory because the Lie algebra is a
trivial (Abelian) algebra. Furthermore, we do not consider here the higher-order cohomology
discussed in [36].

3. Dual BRST symmetry

In this section, we discuss the ‘dual’ BRST symmetry which leaves the gauge-fixing term
of the Lagrangian density invariant. This nilpotent symmetry should be contrasted with the
BRST symmetry (and also anti-BRST symmetry) where it is the curvature term H = dB,
that remains invariant. Just as one linearizes the gauge-fixing term by introducing an auxiliary
field Bµ and a scalar field φ1 in the case of BRST-invariant Lagrangian density (2.1), one can
linearize the the kinetic energy term by incorporating another auxiliary field Bµ and a different
scalar field φ2 to obtain the off-shell nilpotent dual BRST invariance of the same Lagrangian
density‡. Such a BRST- and dual BRST-invariant Lagrangian density, incorporating the above
linearizations, is

LD = 1

2
BµBµ − 1

3!
εµνλζBµHνλζ + Bµ∂µφ2 − 1

2
BµBµ + Bν(∂µB

µν − ∂νφ1)

−∂µβ̄∂µβ + (∂µC̄ν − ∂νC̄µ)∂
µCν + ρ(∂µC

µ + λ) + (∂µC̄
µ + ρ)λ. (3.1)

Under the following off-shell nilpotent (δ2
D = 0) dual BRST symmetry transformations:

δDBµν = ηεµνλζ ∂
λC̄ζ δDC̄µ = −η∂µβ̄ δDCµ = ηBµ

δDβ = ηλ δDφ2 = −ηρ δD(β̄, λ, ρ, φ1, Bµ,Bµ) = 0
(3.2)

the Lagrangian density (3.1) transforms as

δDLD = −η∂µ[ρBµ + λ∂µβ̄ + (∂µC̄ν − ∂νC̄µ)Bν]. (3.3)

† In addition to (2.6), the other canonical momenta are &β = − ˙̄β,&β̄ = −β̇,&(0)
(C) = −ρ,&(0)

(C̄)
= λ.

‡ By integrating out the linearizing field Bµ and the scalar field φ2, we get back the BRST-invariant Lagrangian
density (2.1).
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Thus, the above Lagrangian density (3.1) remains invariant under the dual BRST
transformations (3.2) and the BRST transformations (2.2) (together with δB(Bµ, φ2) = 0). It
is appropriate to call the symmetry transformations (3.2) as the ‘dual’ BRST transformations
because it is the gauge-fixing term (i.e. δB = ∂µB

µνdxν : the Hodge dual of the curvature
dB = H ) of the theory that remains invariant and the kinetic energy term (which remains
invariant under BRST and anti-BRST symmetries) transforms under it to compensate for the
transformation of the ghost terms. The Noether conserved current, derived from the above
symmetry transformations, is

J αD = εαβρσBβ∂ρC̄σ − Bαρ − λ∂αβ̄ − (∂αCλ − ∂λCα)∂λβ̄ − (∂αC̄λ − ∂λC̄α)Bλ (3.4)

which ultimately leads to the derivation of a conserved (Q̇D = 0) and nilpotent (Q2
D = 0)

dual BRST charge (QD = ∫
d3x J 0

D) as

QD =
∫

d3x[ε0ijk(Bi)∂j C̄k − B0ρ − λ ˙̄β − (∂0Ci − ∂iC0)∂i β̄ − (∂0C̄i − ∂iC̄0)Bi]. (3.5)

To prove the conservation law for the Noether current in (3.4), one has to use some of the
following equations of motion derived from the Lagrangian density (3.1):

∂ · B = 0 ∂ · B = 0 �φ1 = �φ2 = 0 Bµ = ∂ρBρµ − ∂µφ1

Bµ = 1

3!
εµνλξH

νλξ − ∂µφ2 � ρ = � λ = �β = � β̄ = 0

�Cµ − ∂µ(∂ · C) + ∂µλ = 0 ∂µC
µ + 2λ = 0

� C̄µ − ∂µ(∂ · C̄) + ∂µρ = 0 ∂µC̄
µ + 2ρ = 0

�Bµ − ∂µ(∂ · B) = 0 → �Bµ = 0 � Bµ − ∂µ(∂ · B) = 0 → � Bµ = 0
εµνλξ ∂

λBξ + (∂µBν − ∂νBµ) = 0.

(3.6)

As the ghost part of the Lagrangian density (3.1) remains invariant under (2.7), it is very
interesting to note that the bosonic part of this Lagrangian density remains invariant under the
following discrete symmetry transformations:

Bµ → ∓iBµ φ2 → ∓iφ1 φ1 → ±iφ2

Bµ → ±iBµ Bµν → ∓ i

2
εµνλξB

λξ .
(3.7)

It is straightforward to check that that the total Lagrangian density (3.1) remains invariant
under the combination of discrete symmetry transformations (2.7) and (3.7). We note here that
the analogue of the Hodge ∗ operation of differential geometry turns out to be the combined
symmetries (2.7) and (3.7). This assertion can be verified by the validity of the following
relation:

δD(") = ± ∗ δB ∗ (") (3.8)

where (+)− stands for the generic field" being (bosonic) fermionic in nature, δD and δB are the
nilpotent transformations (2.2) and (3.2) and the ∗ operation is the discrete transformations (2.7)
and (3.7). Thus, we note that the dual BRST and BRST variations (on a field) are related
to each other in the same way as the action of an exterior derivative d and co-exterior
derivative δ = ± ∗ d∗ on a given differential form. This symmetry is also reflected in the
expressions for BRST and dual BRST charges. In fact, it can be readily seen that, under the
transformations (2.7) and (3.7), one obtains the following changes for these conserved and
nilpotent charges:

QB → QD QD → −QB. (3.9)

In the language of symmetry transformations, this fact can be translated into: δB(") →
δD("), δD(") → −δB(") under (2.7) and (3.7). Here " is the generic field representing
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bosonic as well as fermionic variables of the theory. It is interesting to note the similarity
between relations (3.9) and the usual electromagnetic duality present in the case of Maxwell
equations (for U(1) gauge theory) where E → B,B → −E under global duality
transformations (see, e.g., [37, 38]).

The existence of discrete symmetry for the ghost action allows one to define an anti-dual
BRST chargeQAD from the expression forQD in (3.5). The off-shell nilpotent transformations
generated by QAD can also be derived from (3.2) by exploiting (2.7). Now, it is evident that
the total Lagrangian density (3.1) respects four nilpotent symmetries which are generated by
(anti) BRST and (anti) dual BRST charges. The exact expressions for these charges for the
Lagrangian density (3.1) are

QB =
∫

d3x[ε0ijkBi∂jCk + B0λ− ρβ̇ + (∂0Ci − ∂iC0)Bi − (∂0C̄i − ∂iC̄0)∂iβ] (3.10)

QD =
∫

d3x[ε0ijkBi∂j C̄k − B0ρ − λ ˙̄β − (∂0Ci − ∂iC0)∂i β̄ − (∂0C̄i − ∂iC̄0)Bi] (3.11)

QAB = i
∫

d3x[ε0ijkBi∂j C̄k + B0ρ + iλ ˙̄β + (∂0C̄i − ∂iC̄0)Bi + i(∂0Ci − ∂iC0)∂i β̄] (3.12)

QAD = i
∫

d3x[ε0ijkBi∂jCk − B0λ− iρβ̇ − (∂0Ci − ∂iC0)Bi − i(∂0C̄i − ∂iC̄0)∂iβ].

(3.13)

4. Bosonic symmetry

It is evident that the total Lagrangian density LD in (3.1) is endowed with four nilpotent
symmetry transformations that are generated by the conserved and nilpotent charges (3.10)–
(3.13). It is logical to expect that the anticommutator of the pairs of these symmetries would
also be the symmetry for (3.1). Since four anticommutators ({QB,QAB} = 0, {QD,QAD} =
0, {QB,QAD} = 0, {QD,QAB} = 0) are zero, the other two anticommutators ({QB,QD}
and {QAB,QAD}) would lead to the definition of a bosonic operator W which will generate
a symmetry transformation δW for (3.1). The following transformations generated by the
operator W (with κ = −iηη′)
δWBµν = iκ(∂µBν − ∂νBµ + εµνλξ ∂

λBξ ) δWφ1 = 0

δWφ2 = 0 δWBµ = 0 δWCµ = iκ∂µλ δW C̄µ = −iκ∂µρ

δWρ = 0 δWλ = 0 δWBµ = 0 (4.1)

δW (∂ · C) = iκ � λ δW(∂ · C̄) = −iκ � ρ δW(∂
ρBρµ) = iκ(� Bµ − ∂µ(∂ · B))

δW

(
1

3!
εµνλξH

νλξ

)
≡ δW

(
1

2
εµνλξ ∂

νBλξ
)

= iκ(�Bµ − ∂µ(∂ · B)) δWβ = 0

δW β̄ = 0

turn out to be the symmetry transformations for LD:

δWLD = iκ∂α[Xα]

Xα = ρ∂αλ− ∂αρλ + Bρ∂αBρ − Bρ∂αBρ + Bα(∂ · B)− Bα(∂ · B). (4.2)

Here η and η′ (in the definition of κ) are the fermionic spacetime-independent parameters in
the transformations corresponding to δB and δD of equations (2.2) and (3.2). The Noether
conserved current corresponding to the transformations (4.1) is

J αW = iεαβρσ (Bβ∂ρBσ + Bβ∂ρBσ ) + i∂ρ(BρBα − BαBρ)
+i(∂αCλ − ∂λCα)∂λρ + i(∂αC̄µ − ∂µC̄α)∂µλ (4.3)
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which finally leads to the derivation of a local conserved charge (W = ∫
d3x J 0

W ) as

W = i
∫

d3x[ε0ijk(Bi∂jBk + Bi∂jBk) + (∂0Ci − ∂iC0)∂iρ + (∂0C̄i − ∂iC̄0)∂iλ]. (4.4)

This charge can be directly computed from the anticommutators of {QB,QD} or {QAB,QAD}
by exploiting the analogue of canonical (anti)commutators in (2.5) for the Lagrangian
density (3.1). In fact, all the (anti)commuators of (2.5) remain intact except for the fact
that now the canonical momenta w.r.t. Bkl becomes ε0klmBm instead of H 0kl . Thus, one now
has to replace H 0kl by ε0klmBm in one of the commutators of equation (2.5).

There are simpler ways to compute this generator W for the bosonic symmetry
transformations in (4.1). Since the conserved and nilpotent charges in (3.10)–(3.13) are the
generators of the nilpotent transformations, it can be readily seen that the following equations:

δBQD = −iη{QD,QB} = −iηW

δDQB = −iη{QB,QD} = −iηW

δABQAD = −iη{QAD,QAB} = −iηW

δADQAB = −iη{QAB,QAD} = −iηW

(4.5)

can be exploited to derive W from the expressions of charges in (3.10)–(3.13) and the
transformations (2.2) and (3.2). It will be noticed that here δAB and δAD correspond to anti-
BRST and anti-dual BRST transformations that can be easily derived from equations (2.2)
and (3.2). It is straightforward to check that δDQB = −iηW leads to

W = i
∫

d3x[ε0ijkBi∂jBk + ρλ̇ + (∂0Bi − ∂iB0)Bi + (∂0C̄i − ∂iC̄0)∂iλ]. (4.6)

We can also obtain an expression for W from the expression for QD by applying the
transformations δB (i.e. δBQD = −iηW ) as given below:

W = i
∫

d3x[ε0ijkBi∂jBk + λρ̇ − (∂0Bi − ∂iB0)Bi + (∂0Ci − ∂iC0)∂iρ]. (4.7)

It is obvious that the expressions (4.6) and (4.7) bear a different outlook than the expression
derived in (4.4). All these expressions forW are, however, identical if we exploit the appropriate
equations of motion. Similar expressions emerge from the calculations of other expressions
in (4.5). The most concise form of W that can be derived from (4.5) is

W = i
∫

d3x[ε0ijk(Bi∂jBk + Bi∂jBk) + λρ̇ + ρλ̇]. (4.8)

It will be noticed that we have exploited here only the off-shell nilpotent symmetries (and
conserved charges) for the derivation of W .

One important point to be noticed here is the fact that the operator W does not go to
zero if we exploit the equations of motion. This feature is completely different from the
discussion of the free 2D (non)Abelian gauge theories in [18–20], where it has been argued
that the topological nature of these theories is encoded in the vanishing of the operatorW when
equations of motion are used and all the fields are assumed to fall off rapidly at infinity.

5. Extended BRST algebra

In this section, we concentrate on the derivation of an extended BRST algebra (which is found to
be constituted by six conserved charges) and provide a possible connection of this algebra with
the algebra of the de Rham cohomology operators of differential geometry. In the normal BRST
algebra, there are three conserved charges (namely Qg,QB,QAB) of equations (2.9), (3.10)
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and (3.12). The existence of new symmetries, however, provide three more conserved charges
(viz, QD,QAD and W ) which are given by equations (3.11), (3.13) and (4.8). If one exploits
the canonical (anti)commutators of equation (2.5) for the Lagrangian density (3.1), one can
show that all the six conserved charges obey the following extended BRST algebra:

[W,Qk] = 0 k = g, B,AB,D,AD

Q2
B = 0 Q2

D = 0 Q2
AB = 0 Q2

AD = 0

i[Qg,QB] = +QB i[Qg,QD] = −QD i[Qg,QAB] = −QAB

i[Qg,QAD] = +QAD {QB,QAB} = 0 {QD,QAD} = 0

{QB,QAD} = 0 {QD,QAB} = 0 {QB,QD} = {QAB,QAD} = W.

(5.1)

A few comments are in order. First of all, it is trivial to see that the operator W is the
Casimir operator for the whole extended BRST algebra. Second, there are four nilpotent
(of order two) charges in the extended BRST algebra. Third, two anticommutators (namely
{QB,QD}, {QAB,QAD}) lead to the definition of the Casimir operatorW . And, last, the ghost
number for charges QB and QAD is +1 and that of QD and QAB is −1. There are simpler
ways to check the validity of the above statements. For instance, exploiting the symmetry
transformations of equations (2.2), (3.2), (4.1) and an infinitesimal version of (2.8), it can be
easily seen that

δBW = 0 δDW = 0 δgW = 0

δABW = 0 δADW = 0 δWW = 0
(5.2)

where the expression for the W operator can be taken to be its most concise form of
equation (4.8). Similarly, other expressions for the (anti)commutators in (5.1) can be checked
by merely using the symmetry transformation properties and the expressions for the conserved
charges.

Next, we present arguments to bring out the analogy between symmetry generators of this
field theoretical model and the de Rham cohomology operators. It is a well known fact that
the de Rham cohomology operators (d, δ,�) obey the following algebra:

d2 = 0 δ2 = 0 � = (d + δ)2 = dδ + δd

[�, d] = 0 [�, δ] = 0 � = {d, δ}. (5.3)

Furthermore, a differential form of degree n (fn) becomes a differential form of degree n + 1
(fn+1) due to the application of operator d (i.e. dfn ∼ fn+1). In contrast, the operator δ reduces
the degree of a form by one (i.e. δfn ∼ fn−1) on which it acts and the Laplacian operator� does
not change the degree of the form (i.e. �fn ∼ fn). Now we observe that the ghost number of
the state is parallel to the degree of the differential form andQB,QD andW play, respectively,
the role of d, δ and � in differential geometry. Exploiting the algebra (5.1), it can be readily
seen that a state |ψ〉n with ghost number n (i.e. iQg|ψ〉n = n|ψ〉n) in the quantum Hilbert space
will imply that the ghost number for the statesQB |ψ〉n,QD|ψ〉n,W |ψ〉n is (n+ 1), (n−1), n,
respectively. This fact can be succinctly expressed as

iQgQB |ψ〉n = (n + 1)QB |ψ〉n
iQgQD|ψ〉n = (n− 1)QD|ψ〉n
iQgW |ψ〉n = nW |ψ〉n
iQgQAB |ψ〉n = (n− 1)QAB |ψ〉n
iQgQAD|ψ〉n = (n + 1)QAD|ψ〉n.

(5.4)

Thus, one can now draw a parallel between the differential geometry (and the corresponding
de Rham cohomology operators) defined on a compact manifold and the quantum states,
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conserved charges, etc., defined in the quantum Hilbert space of states. For instance, the
differential forms are just like quantum states; a closed form (df = 0) is just like a
BRST closed (physical) state (QB |ψ〉 = 0); a compact manifold is just like the quantum
Hilbert space of states; degree of a form is analogous to the ghost number and the de Rham
cohomology operators (d, δ,�) have their counterpart as conserved charges (QB,QD,W ) and
(QAD,QAB,W ), etc. It is a very special feature of the BRST formalism that each of the de
Rham cohomology operators d, δ can be identified with two symmetry generators. This, in
turn, implies that, irrespective of the nature (i.e. real or complex) of the compact manifold, its
counterpart—the quantum Hilbert space of states—is always complex so that d and δ have two
representations and the analogue of the Laplacian operator (i.e. W ) can also be expressed in
two different ways (i.e. {QB,QD} = {QAB,QAD} = W ). However, if we backtrack, the full
strength of the BRST cohomology and Hodge decomposition theorem implies that the compact
manifold has to be a complex manifold so that one can achieve a complete analogy with the
BRST formalism. In other words, it should be possible to define (d, d̄), (δ, δ̄) and (�, �̄) on
the compact manifold so that cohomology operators � = �̄ and � = dδ + δd ≡ d̄ δ̄ + δ̄d̄ can
be constructed on this manifold.

6. Constraint analysis

In this section, we first discuss the Hodge decomposition theorem for a given state |ψ〉n (with
ghost number n) in the quantum Hilbert space of states. This is then followed by the discussion
of constraints on the physical (harmonic) states by the imposition of the physicality criteria
with conserved and nilpotent charges (i.e. QB |phys〉 = 0,QD|phys〉 = 0) which define the
physical subspace of states in the total quantum Hilbert space of states. It is obvious from the
algebra (5.1) and the ghost number analysis in equation (5.4) that any arbitrary state |ψ〉n in
the quantum Hilbert space of states can now be written as

|ψ〉n = |ω〉n +QB |θ〉n−1 +QD|χ〉n+1 (6.1)

where |ω〉n is the harmonic state (i.e. W |ω〉n = 0,QB |ω〉n = 0,QD|ω〉n = 0), QB |θ〉n−1 is a
BRST exact state and QD|χ〉n+1 is a co-BRST exact state. This equation is just the analogue
of the Hodge decomposition theorem (1.1) written for a differential form in terms of the de
Rham cohomology operators (d, δ,�) defined on a compact manifold. It is a special feature of
the BRST formalism (and the corresponding extended BRST algebra (5.1)) that equation (1.1)
can also be expressed in terms of the conserved and nilpotent charges QAB and QAD as

|ψ〉n = |ω〉n +QAD|θ〉n−1 +QAB |χ〉n+1 (6.2)

whereQAB andQAD are the anti-BRST and anti-dual BRST charges†. It is a noteworthy point
that the combined discrete transformations (2.7) and (3.7) turn out to be the symmetry of the
Lagrangian density of the theory under discussion. It is obvious from our earlier arguments
that this symmetry corresponds to the Hodge duality operation (i.e. ∗ operation) in differential
geometry. Thus, we have a theory which is duality invariant due to the presence of the discrete
symmetries (2.7) and (3.7). As a result, the vacuum and physical states of the quantum theory
should also be duality (i.e. BRST and dual BRST) invariant in the quantum Hilbert space of
states. This feature, in fact, has been exploited in [18–20] to establish the topological nature
of the 2D free (non)Abelian gauge theory. In the BRST formalism, physical states are those
states that are annihilated by QB (i.e. QB |phys〉 = 0). Due to the presence of the discrete

† Unlike the uniqueness of the Hodge decomposition in the mathematical aspects of the de Rham cohomology, the
uniqueness of the corresponding decomposition of the quantum states (cf equations (6.1) and (6.2)) is not obvious in
the quantum Hilbert space of states.
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symmetry, it is obvious that QB goes to QD (cf (3.9)) and hence the latter also annihilate the
physical states (i.e. QB |phys〉 = 0 → QD|phys〉 = 0). These two together imply that the
Casimir operatorW also annihilates the physical states. It is, therefore, clear that the physical
states are the harmonic states. Of course, the vacuum state will be annihilated by all these
charges, as they are the generators of the unbroken symmetry transformations†. Thus, these
states satisfy

W |vac〉 = 0 QB |vac〉 = 0 QD|vac〉 = 0

QAB |vac〉 = 0 QAD|vac〉 = 0

W |phys〉 = 0 QB |phys〉 = 0 QD|phys〉 = 0

QAB |phys〉 = 0 QAD|phys〉 = 0.

(6.3)

The conditions iQg|phys〉 = 0 and iQg|vac〉 = 0 imply that the ghost number of the physical
and vacuum states is zero. No other constraint emerges on physical states due to the existence
of ghost charge Qg. It will be noted that the conditions (QB |phys〉 = 0,QAB |phys〉 = 0)
lead to the one and the same constraints on the physical state. Thus, we can choose one of
them for the constraint analysis. Similar argument holds for the conditions QD|phys〉 = 0
and QAD|phys〉 = 0 and one can choose only one of these charges for the discussion of
constraints‡. Thus, we see that the vacuum, as well as the physical (harmonic) states, of the
theory respect three basic symmetries (cf (6.3)) and the ghost number for them is zero. It will
be noticed that these conclusions are arrived at by the symmetry considerations alone.

Before we concentrate on the constraint analysis of the Lagrangian density in (3.1), we shall
dwell a bit on the nature of constraints for the original Lagrangian density L of equation (1.2).
It is evident that the canonical momenta w.r.t. the antisymmetric field Bµν is &µν = H 0µν

and the equations of motion are ∂µHµνλ = 0. Thus, it is clear that &0i ≈ 0 is the primary
constraint and the secondary constraint is nothing other than the equation of motion w.r.t.
B0i field, i.e. ∂jHoij ≡ ∂j&

ij ≈ 0. Both these constraints are first class [28, 29] in the
language of Dirac and they imply the existence of a gauge symmetry in the theory. For the
consistent quantization of this theory, it is essential that &0i |phys〉 = 0, ∂j&ij |phys〉 = 0
(Dirac’s prescription). We shall see that exactly these constraints will appear when we shall
demand QB |phys〉 = 0 (for the Lagrangian density (3.1)). Its dual description will emerge
from the requirement QD|phys〉 = 0.

It can be readily seen that the requirementQB |phys〉 = 0, for the Lagrangian density (3.1),
leads to the following constraints on the theory:

&0i (= Bi)|phys〉 = 0 → (∂ρB
ρi − ∂iφ1)|phys〉 = 0

∂j&
ij (= ∂0B

i)|phys〉 = 0 → (−εoijk∂jBk)|phys〉 = 0
(6.4)

where the expression for QB has been taken from equation (3.10) and equations of motion
from (3.6) have been used for the above derivation. Furthermore, it has been assumed here
that the ghost fields, present in the expression for QB , do not lead to any constraints on the
physical states of the theory. It is evident that, in the above equation, we retrieve the constraints
of the original gauge theory described by the Lagrangian density (1.2). Now the requirement
QD|phys〉 = 0 leads to

(Bi )|phys〉 = 0 → ( 1
2ε
iνλξ ∂νBλξ − ∂iφ2)|phys〉 = 0

(∂0Bi )|phys〉 = 0 → (+εoijk∂jBk)|phys〉 = 0.
(6.5)

† If the discrete transformations (2.7) and (3.7) (which relate QB and QD) are not the symmetry of the Lagrangian
density, the physical (harmonic) states can be assumed to be annihilated independently by the BRST and the dual
BRST charges.
‡ In what follows, we shall concentrate on the set of operators QB,QD,W for the discussion of the Hodge
decomposition theorem as well as the constraint analysis. However, our arguments and analysis will be valid for
the set of operators QAB,QAD,W as well.
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Exploiting equation (3.7) of the duality transformations for the bosonic part of the Lagrangian
density, it can be checked that the above constraints in (6.5) are just the ‘dual description’ of
the constraints obtained in (6.4), though they appear different.

It will be noticed that, even though the auxiliary fieldB0 is present in the expression forQB ,
we have not writtenQB |phys〉 = 0 implies B0|phys〉 = 0. This is because of the fact that B0 is
a conserved quantity and it remains the same w.r.t. time evolution. In fact, it can be easily seen
that the quantity I0 = ∫

d3x B0 is a time evolution invariant operator due to equations of motion
in (3.6) (i.e. ∂0B0 = ∂iBi). Thus, B0|phys〉 = 0 is a trivial constraint on the theory. Similarly,
we have not concluded from the restrictionQD|phys〉 = 0 the obvious constraint B0|phys〉 = 0
as there is no evolution for the B0 field due to ∂ · B = 0 (cf (3.6)). Strictly speaking, however,
these constraints should be incorporated in (6.4) and (6.5), respectively. In fact, these finally
imply that&φ1(= −B0)|phys〉 = 0 and&φ2(= B0)|phys〉 = 0. More precisely, the constraints
B0|phys〉 = 0, Bi |phys〉 = 0 and their counterparts B0|phys〉 = 0,Bi |phys〉 = 0 together
imply that

(Bµ)|phys〉 = 0 → ( 1
2ε
µνλξ ∂νBλξ − ∂µφ2)|phys〉 = 0

(Bµ)|phys〉 = 0 → (∂ρB
ρµ − ∂µφ1)|phys〉 = 0.

(6.6)

This shows that the total gauge-fixing term (∂ρBρµ−∂µφ1) and its dual annihilate the physical
states of the theory. These conditions gauge away some of the degrees of freedom of the Bµν
gauge field. It is straightforward to see that the constraints W |phys〉 = 0 does not lead to any
new restrictions on the physical state. In fact, it encompasses both the constraints given in
equations (6.4) and (6.5) due toQB |phys〉 = 0 andQD|phys〉 = 0. This is due to the fact that
W = {QB,QD} and W |phys〉 = 0 implies that QB |phys〉 = 0 and QD|phys〉 = 0 which are,
in some sense, unique solutions to the constraint W |phys〉 = 0. It should be recalled that, in
the discussion of the de Rham cohomology operators and the Hodge decomposition theorem,
one says that the definition of the harmonic form h (�h = 0) implies that h is closed (dh = 0)
and co-closed (δh = 0) together (see, e.g., [9, 10]). We note that similar conclusions can be
drawn here from the properties of the set of local and conserved charges W,QB and QD (or
the set W,QAD and QAB).

7. Summary and discussion

We have shown that the BRST-invariant two-form gauge theory in four (3 + 1) dimensions
has an additional nilpotent symmetry, called the dual BRST, which keeps the gauge-fixing
term invariant. The anti-commutator of both the nilpotent charges (namely QB and QD) is
the generator (W ) of a bosonic symmetry transformation, under which the ghost terms remain
invariant. We can see the parallel between the BRST and the dual BRST symmetry: the
nilpotent (anti)BRST symmetry transformations leave the kinetic energy term (more precisely,
the curvature term) of the free Abelian two-form gauge theory invariant. On the other
hand, it is the gauge-fixing term that remains invariant under the (anti)dual BRST symmetry
transformations. Another parallel is: as the BRST-invariant Lagrangian density (3.1) can be
written as the sum of kinetic energy and BRST exact terms, i.e. LKE + 1

η
δB(F ) (where F

is a function of the local fields), in the same way we can also express (3.1) as the sum of
gauge-fixing and the co-BRST exact parts, i.e. LGF + 1

η
δD(G), namely

LD = Bν(∂µB
µν − ∂νφ1) +

1

η
δD(G)

G = 1
2CµBµ − 1

6εµνλσC
µHνλσ − (∂µCµ + λ)φ2 − (∂µC̄

µ + ρ)β.
(7.1)

We have exploited the above symmetries to construct a field theoretical model for the
Hodge theory on the 4D Minkowskian manifold where all the de Rham cohomology operators
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(d, δ,�) have their counterparts as the conserved and nilpotent charges (corresponding to d
and δ) and the bosonic conserved chargeW (corresponding to the Laplacian operator�) for the
BRST-invariant version of the free two-form Abelian gauge theory. All these charges are local
and they generate the symmetry transformations for the Lagrangian density of this theory. In
the framework of the BRST formalism, it turns out that the analogue of the Laplacian operator
(i.e. W ) can be represented in two different ways (W = {QB,QD} = {QAB,QAD}). Thus, d
and δ have two representations (i.e. d ≡ QB,QAD, δ ≡ QD,QAB) in terms of the nilpotent
charges.

The bosonic symmetry generator W (anticommutator of QB and QD) turns out to be the
Casimir operator for the extended BRST algebra. Under the transformation, generated by the
Casimir operator, all the fermionic fields either do not transform or transform by a vector gauge
transformation (e.g., δWCµ = iκ∂µλ, δW C̄µ = −iκ∂µρ). It will also be noticed that all the
gauge-fixing terms, for the bosonic as well as the fermionic fields, transform to the equations
of motion under this transformation (cf equation (4.1)). There exists a discrete symmetry
transformation in the theory (cf equations (2.7) and (3.7)) which behaves like the analogue of
the Hodge ∗ operation. In fact, it relates the nilpotent transformations δD and δB in a similar
fashion as there exists a relationship between the dual-exterior derivative δ (δ = ± ∗ d∗) and
the exterior derivative d in differential geometry.

We summarize the main results.

(i) We have found out a possible mapping between the de Rahm cohomology operators of
differential geometry and the symmetry generators of a (3+1)-dimensional field theoretical
model for the Hodge theory.

(ii) We have shown the existence of a mapping between the Hodge ∗ operation and the discrete
transformations of the fields of the theory. Both these mappings can be concisely expressed
as

Exterior derivative d ⇔ QB,QAD

Co-exterior derivative δ ⇔ QD,QAB

Laplacian � ⇔ W = {QB,QD} = {QAB,QAD}
Hodge ∗ operation ⇔ symmetry transformations (2.7) and (3.7).

(7.2)

(iii) The constraints, emerging from QB |phys〉 = 0 and QD|phys〉 = 0 are related to each
other due to the existence of the discrete duality transformations (3.7) for the bosonic part
of the Lagrangian density (3.1).

(iv) We see that the Lapalcian operator W does not go to zero on-shell. This property was
claimed to be one of the salient features of the topological field theory in [18–20] where
the topological nature of the free 2D (non)Abelian one-form gauge theory was established.
Furthermore, we are unable to express the Lagrangian density (3.1) as the sum of BRST-
and dual BRST-invariant parts. This, in turn, implies that the energy–momentum tensor
also cannot be expressed as the sum of BRST and dual BRST anticommutators. In addition,
we are unable to obtain the topological invariants of the theory under consideration. Thus,
two-form free Abelian gauge theory in 4D does not mimic all the features of the free 2D
one-form gauge theory as a field theoretical model for the Hodge theory.

It will be interesting to explore the possibility of extending our investigations to the case
of interacting (non)Abelian two-form gauge theory where matter fields are also present. The
existence of new symmetries and their generalizations might turn out to be useful in the
context of the proof for the renormalizability of such theories. It would be useful if we could
discuss the B ∧F (non)Abelian gauge theory in the framework of the BRST cohomology and
Hodge decomposition theorem, where the one-form gauge fields and two-form gauge fields are
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coupled to each other in a topologically invariant way. Its further extension to include matter
fields is another workable problem. These are some of the issues which are under investigation
and our results will be reported in future publications.
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